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Abstract 

Through growingly accessible computing power and frameworks, deep learning has 

emerged as a promising approach to automatically extract information from images, 

thereby saving time and resources. This project combines earth observation (EO) data 

analysis with deep learning to highlight changes in the city of Cologne’s road network 

between the years 1998 and 2019. A U-Net architecture-based convolutional neural 

network is used to identify roads in areal images from the two years. The generated road 

maps are then compared to detect changes between the years. Due to the lack of available 

datasets for the study area, an aerial image road dataset of Massachusetts is used to train the 

deep learning model. The model interacts with the imagery data in a Python environment 

and is built using the TensorFlow framework. The results show significant changes in the 

road network. However, future research is needed to further improve the quality of the 

segmented road maps. The low time and effort required to generate road segmentations 

using the proposed approach may make it well-suited for time-sensitive mapping tasks. 

Future improvement of the methodology could enable usage for disaster response mapping 

or precise mapping of newly developing areas that lack road data. This interdisciplinary 

project has applications in urbanization, image understanding, and change detection. It 

contributes to the growing field of earth observation and deep learning. The code and pre-

trained model are available on GitLab. 
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1 Introduction 

The field of earth observation (EO) provides a growing amount of earth data, including 

satellite and aerial imagery (Gomes et al., 2020; Sudmanns et al., 2020). EO data may be 

used to monitor the earth’s surface and identify potential changes for numerous application 

domains such as urbanization and planning, disaster management, agriculture, etc. 

Sudmanns et al. (2020) also describe the need for EO data to be interpreted to gather 

meaningful information from it. For aerial or satellite images, this traditionally includes the 

separate steps of segmentation and classification (Lang et al., 2019; Matsuyama, 1987). 

Automating such manually laborious tasks has great potential to save time and improve 

work efficiency. Through research, large amounts of data, and growingly accessible 

computing power, deep learning has emerged as a promising approach for extracting 

information from images and can combine segmentation and classification into one step 

referred to as semantic segmentation (H. Wang et al., 2017; Wu et al., 2019). This project 

employs semantic segmentation to perform a change detection analysis on specific sections 

of the road network in Cologne, Germany. A U-Net architecture-based convolutional neural 
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network (CNN), is used to generate binary semantic segmentation masks of roads from 

aerial images. Using these road masks, side-by-side comparisons of the same location 

during different years are conducted to identify changes in the road network. 

Cologne is chosen as the study area of this project, as over the past decades, Cologne’s 

population has seen a steady increase from 962,580 inhabitants in 1998 to 1,087,863 

inhabitants in 2019 (Statistisches Bundesamt, 2023) (Figure 1). This population increase 

can serve as a proxy indicator for infrastructural growth, including the construction of new 

buildings and accompanying roads. The timeframe chosen to analyze changes is between 

the years 1998 and 2019. 

Figure 1:  The city of Cologne's population development from 1996 to 2022 (Statistisches 

Bundesamt, 2023). X-Axis: Year. Y-Axis: Population.  

Two main factors shall be considered to assess the quality of the model for road change 

detection. The first is the accuracy of the segmentation, meaning how well the predicted 

target maps, represent the ground truth target maps. The second factor is the time and effort 

taken to conduct the analysis with the trained model compared to a manual approach. As 

the Cologne dataset (including the road masks) was created manually, the time and effort 

taken for the automatic segmentation can be directly compared to the manual approach. 

Further factors such as cost, accessibility, and transparency may also play a role. However, 

these are largely outside of the scope of this paper and will not be discussed. The results of 
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this project are expected to successfully highlight major road network changes in the study 

area. The segmentation accuracy is not expected to be able to match the accuracy of a 

manual approach due to limiting factors such as hardware and time limitations, difficult 

image and road conditions, and differences between training and test data. However, the 

deep learning segmentation is expected to significantly outperform the speed of manual 

segmentation. 

Given the interdisciplinary application domains of image understanding and change 

detection, this project may provide valuable findings for a broad range of disciplines and 

contributes to the growing field of deep learning in EO. All code and the pre-trained model 

are available on GitLab. 

2 Material and Methods 

Throughout the project, a variety of technologies and software are employed. The Cologne 

dataset is created primarily using QGIS. The creation of the U-Net CNN model and the 

necessary data preprocessing and postprocessing steps are conducted using the Python 

programming language. The TensorFlow framework is employed to build, use, and 

evaluate the model. The code is deployed in a Jupyter Notebook, hosted on Google Colab. 

This grants access to a capable computing environment and allows for easily sharable code 

and reproducible results. The GitHub MobileNetV2 implementations by Raj (2020) and 

Tomar (2020) served as starting points for creating the deep learning workflow. The 

methods used throughout the entire project are detailed in this chapter. 

2.1 Data 

As there is no labeled data available for the area of interest, the model is trained using the 

road dataset of the Massachusetts Road and Building Detection Datasets created by Mnih 

(2013) as part of a Ph.D. thesis. This road dataset contains 1171 3-channel aerial images of 

the state of Massachusetts at a resolution of 1500 × 1500 pixels where each image covers 

an area of 2.25 km² (Mnih, 2013). For each aerial image, the dataset contains a target map 

(ground truth mask) of the roads on that image. The target maps are single-channel Boolean 

images comprising the classes road and not-road and were created using OpenStreetMap 

road data (Mnih, 2013). Using a different dataset to train the model will test the model’s 

ability to generalize to new data. 

To apply the trained model to images of Cologne and conduct a change detection, a small 

dataset comprising five locations in Cologne is created (Figure 2). The areas of the five 

locations are 1: Lövenich, 2: Sürth, 3: Kalk, 4: Fühlingen, and 5: Worringen. For each 

location, two pairs of images each comprising an aerial image and a road mask are created. 

One for 1998 and one for 2019, resulting in 10 pairs of images in the Cologne dataset. The 

locations are chosen based on areas of suspected and confirmed road network expansion. 

The aerial imagery is obtained as open data provided by the state of Nordrhein-Westfalen in 

the form of an OGC WMS. This service offers historical digital imagery between the years 

of 1998 and 2020. No historical road data for the year 1998 could be found. Therefore, the 

target masks are created by manual delineation using the aerial imagery and 

OpenStreetMap data of persistent roads for reference. To improve the generalization 
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performance of the model, the Cologne dataset is created in the same way described by 

Mnih (2013) for the creation of the Massachusetts training set (1500 × 1500 pixel images 

covering an area of 2.25 km²). This results in a 1-meter spatial resolution of the images.  

 

 

2.2 Preprocessing & Postprocessing  

Before training the model, the Massachusetts road dataset is split up into a training, 

validation, and test set using an 80:10:10 ratio. The training set comprises 937 pairs of 

images and the validation and test sets both comprise 117 pairs of images.  

Due to the large size of the individual raw images (particularly the 3-channel aerial 

images), using them as direct input to the network would require a large amount of 

computing resources not available for this project. Therefore, as a preprocessing step, the 

images are resized to a resolution of 256 × 256 pixels. This results in a 5.86-meter spatial 

resolution. Due to the GPU VRAM limitations of the Google Colab computing 

environment, this was determined to be the highest possible resolution using the proposed 

architecture. The images can be resized within the Jupyter Notebook (takes longer) or 

locally and then uploaded (faster and more reliable). The Python script created to resize the 

images locally can be found on GitLab. Further preprocessing steps are implemented to 

read the images into an appropriate form and transform the pixel values to a normalized 

numerical representation for the model with 

𝑋′ =  𝑋  255⁄   

where 𝑋′ is the normalized data, and 𝑋 is the original data. This divides each pixel value by 

the maximum possible value of 255 receive to a normalized range of 0 to 1. 

 

 

Figure 2: Cologne dataset comprising five locations. Column numbers indicate the 

location number. Top row: 1998. Bottom row: 2019. 
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Similarly, the model’s output is also postprocessed to obtain the predicted target masks of 

an image. For this, the model’s class prediction of each pixel between 0 and 1 is turned into 

a binary image by classifying all values higher than 0.5 as 1 and all values lower than 0.5 as 

0.  

2.3 U-Net 

The U-Net is a popular CNN architecture, first implemented by Ronneberger et al. (2015) 

for biomedical image segmentation (Figure 3). The architecture consists of a contracting 

(encoder) and expansive (decoder) path (Ronneberger et al., 2015). The contracting path 

downsamples the input image to capture high-level features. The expansive path then 

upsamples the created feature maps, using skip connections from the contracting path to 

retain low-level features (Ronneberger et al., 2015; Zhang et al., 2017). The output is a 

segmentation of the same resolution as the input image. 

 

Figure 3: Original U-net Architecture. The blue boxes represent multi-channel feature 

maps, with the number of channels indicated on top. The size of each feature map is 

indicated at the bottom left corner of the box. The white boxes represent copied feature 

maps. Arrows indicate operations being performed. Image by Ronneberger et al. (2015). 

The U-net created for this project, uses a MobileNetV2 (Sandler et al., 2018) encoder 

section with pre-trained weights on the ImageNet database (Keras, 2023). Employing this 

form of transfer learning, allows the U-Net to leverage the learned parameters from the 

large ImageNet benchmark dataset and refine them for the task of segmenting roads (Iorga 

& Neagoe, 2019). This allows the model to converge faster and may improve performance. 

The MobileNetV2 architecture is chosen for the encoder as it has been able to achieve state-
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of-the-art performance (Sandler et al., 2018) while being less resource-demanding than 

other state-of-the-art models during training and inference (Keras, 2023; Sandler et al., 

2018; Tomar, 2020). 

To evaluate performance during and after training, the Dice coefficient, Dice loss, Recall, 

and Precision are implemented as metrics. The Dice coefficient is a spatial overlap-based 

metric (Z. Wang et al., 2020) used as the main measure of segmentation accuracy in this 

project. It is used to provide a comparison between the manually delineated road masks and 

the automatically segmented road masks. The Dice coefficient is defined as 

𝐷𝐶 =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
                      

where 𝐷𝐶 is the Dice coefficient, 𝐴 represents the manual road delineations, and 𝐵 

represents the model’s road segmentation (Dice, 1945; Shamir et al., 2018). Both 𝐴 and 𝐵 

are binary sets with values of either 0 or 1. The Dice loss function is defined as 1 − 𝐷𝐶. 

During training the goal is to maximize the Dice coefficient to achieve the best 

performance. To do this, hyperparameters such as the learning rate, optimizer, stopping 

condition, filters, and architectural parameters must be evaluated and adjusted (Jakubovitz 

et al., 2019; Kawaguchi et al., 2017; Lang et al., 2019; Yu & Zhu, 2020). 

An important hyperparameter provided by the MobileNet architecture is the alpha value. It 

controls the width (number of filters per layer) of the MobileNet encoder network. Values 

between 0.35 and 1.4 can be used to scale the width (Keras, 2023; Sandler et al., 2018). For 

the created model architecture, an alpha of 0.35 results in 985,649 total parameters 

(977,761 trainable), while an alpha of 1.4 results in 3,186,801 total parameters (3,161,105 

trainable). 

To make adjustments during the training process, the following callbacks are implemented: 

• The learning rate is decreased when the validation loss does not decrease for a 

predefined number of epochs.  

• The training process is terminated if the validation loss does not decrease for a 

predefined number of epochs.  

• After each epoch, the Dice accuracy is used to determine if a new performance 

peak has been reached. If so, then the current model is saved to a file. 

2.4 Change Detection 

The Massachusetts test set is used to evaluate the performance of the model on very similar 

data to the data the model has been trained on, before applying the learned parameters to a 

new setting. Change detection of the road network in Cologne is conducted by using the 

trained model to generate target masks for the Cologne test set aerial images and visually 

compare the changes over time per area. Interactive image sliders are implemented to allow 

for the direct comparison of images.  
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3 Results 

After initial experimentations, evaluations, and optimizations, the model outlined in Table 1 

achieved promising metrics on the Cologne dataset. 

Table 1: Hyperparameters of an intermediate model achieving promising results on the 

Cologne test set. 

Intermediate U-Net  

Number of Layers 153 

Total parameters 985,649 

Trainable parameters 977,761 

Input image size 256 × 256 pixels 

Input image format JPG 

Number of training epochs 70 

Batch size 32 

Learning rate 1e−4 (0.0001) 

Optimizer Nadam 

Alpha 0.35 

 

This model achieved a Dice accuracy of 0.38 on the Massachusetts test data and 0.27 on the 

Cologne test data.  

Further experimentations proved that increasing only the alpha value did not positively 

affect the performance of the model on the Cologne dataset. However, when changing the 

image format from JPG to PNG, a slight increase in Dice accuracy for both test sets was 

noted. Observing the metrics (Dice coefficient, Dice loss, recall, precision) during training, 

revealed that models may not be fully converged after 70 epochs. Therefore, the maximum 

number of epochs was increased to 150. Different values for the initial learning rate were 

tested. The best performance on both test sets was observed with a learning rate of 5e−4. 

Performance metrics and visual results on the Cologne dataset improved further when the 

alpha was then raised to 0.75. Higher alpha values up to 1.4 were tested and achieved an 

increasingly high performance on the Massachusetts test set. The performance on the 

Cologne test set did not show any significant improvements. 
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Overall, the best Dice accuracy of 0.31 on the Cologne dataset is achieved by the model 

outlined in Table 2. This model achieved a Dice accuracy of 0.49 on the Massachusetts test 

set. 

Table 2: Hyperparameters of the best-performing model on the Cologne test set. 

Best Cologne U-Net  

Number of Layers 153 

Total parameters 1,697,873 

Trainable parameters 1,683,153 

Input image size 256 × 256 pixels 

Input image format PNG 

Number of training epochs 150 

Batch size 32 

Learning rate 5e−4 (0.0001) 

Optimizer Nadam 

Alpha 0.75 

 

Figure 4 shows the above model’s output segmentation for the entire Cologne dataset. The 

more accurate results of a high alpha model on the Massachusetts test data can be seen in 

Figure 5. 

 

Figure 4: Cologne dataset segmentation output. Column numbers indicate the location 

number. Top row: 1998. Bottom row: 2019. 
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Figure 5: Example of high accuracy on the Massachusetts test set. Left: Aerial image. 

Middle: OSM road delineation. Right: Model’s segmentation. 

By directly comparing the images to each other side-by-side, changes in the road network 

of each area can be visually identified. To more easily visually identify changes, interactive 

image sliders displaying the results have been created and can be used at the following web 

address: https://adiandawuda.com/rchan 

4 Discussion 

Side-by-side comparisons of the 1998 and 2019 segmentations show the overall growth of 

the road network. In all images from 2019, roads that are not present in the 1998 images 

can be observed. When comparing the time and effort needed to perform manual 

delineation of roads to the semantic segmentation using a trained model, the latter is 

significantly more efficient. However, inspecting the change detection segmentation 

(Figure 4), it is clear that in its current state, the trained model has trouble identifying 

numerous road sections in the study area. This is confirmed by the relatively low Dice 

coefficient of the results. 

By observing the performance of various intermediate models, it becomes clear that large 

Dice accuracy improvements on the Massachusetts test set do not necessarily result in 

improvements on the Cologne test set. When the performance on the Cologne test set does 

improve, it is at a significantly lower rate than on the Massachusetts test set. This shows 

that the models created do not generalize well. Data augmentation techniques could be 

employed to artificially increase the diversity of the Massachusetts training dataset to try to 

improve generalization and overall performance. 

Using a higher image resolution during training may also significantly improve the results, 

as road features would be easier to recognize. At 256 × 256 pixels (5.86-meter spatial 

resolution), narrow and partially obscured road features cannot be identified well. Cropping 

individual images into multiple smaller images was briefly experimented with but did not 

yield any promising results for this project. However, this technique could be investigated 

again in more detail. 

https://adiandawuda.com/rchan
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The different lighting conditions between the images from 1998 and 2019 may also 

influence the quality of the change detections. the aerial images from 1998 were captured 

during a sun-exposed day, resulting in a generally lighter color of the roads and 

environment. The images from 2019 were captured during a more overcast day, resulting in 

slightly darker colors. To reduce the effect that lighting differences have on the 

segmentation, a more diverse training dataset and data augmentation could be used. 

Furthermore, between the two years, there have been changes in the environment that 

influence the model’s ability to segment roads. This includes the cover of roads by 

vegetation, buildings, or shadow, as well as changes in the road cover of persistent road 

features. In Figure 4 at location number 2, the model’s segmentation for 1998 captures a 

large persistent north-south leading road which in reality is present in both years. However, 

the 2019 segmentation largely fails to capture this feature. This is likely due to large 

portions of the road being obscured by trees in the 2019 aerial image, as the unobscured 

parts are mostly recognized in the model’s segmentation.  

Employing transfer learning with different models trained on larger datasets, such as the 

recently released SA-1B Dataset (Kirillov et al., 2023), may also positively improve the 

quality of the results. 

5 Conclusion and Outlook 

In conclusion, this project successfully performed change detections for five sections of the 

road network in Cologne between the years 1998 and 2019. The overall growth in the road 

network can be observed in the results. The use of deep learning to automate road detection 

from aerial images was successfully shown. Future research can expand on the results by 

working with different datasets and further optimizing model performance. In its current 

state, the proposed approach is useful when a general overview of a road network is 

required, not putting a high emphasis on accuracy. The current results can be verified and 

further refined using a semi-automatic or manual approach. The underlying methodology 

employed in this project is not limited to urbanization study and could be employed for a 

broad range of applications. The low time and effort required to generate road 

segmentations may make the methodology well-suited for time-sensitive mapping tasks, 

e.g., disaster response mapping. Further improvement, could also enable precise mapping 

of newly developing areas lacking road data. 
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