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1  Introduction 

In the era of big data, the amount and availability of remote sensing and earth observation (EO) 

data as a whole has seen a large increase (Culberg & Fuhs, 2017; Lv & Wang, 2020). This increase 

stems not only from the larger quantity of imagery being captured but also from improvements to 

the spatial and spectral resolution of remote sensing images (Lv & Wang, 2020). A key aspect in 

the domain of remote sensing is obtaining meaningful information from the captured data. To 

achieve this, images are often classified. Classification of remote sensing images transforms raw 

pixel values of the earth’s surface, environment, and atmosphere into usable information by 

identifying and categorizing pieces of the image (Lv & Wang, 2020). This extraction of information 

by means of classification may be the end product or just an intermediate step of an analysis. 

Nonetheless, it is a crucial task to be performed (Thanh Noi & Kappas, 2017). Because of the 

large amount of generated data and because classifying images manually takes a great amount of 

time and effort, performant solutions are necessary. Following the stance that probabilistic methods 

are well suited to facilitate data analysis (Murphy, 2012), many methods of image classification 

with varying degrees of automation have been developed. These methods rely on the concept of 

machine learning. 

The term machine learning is broad and contains many subcategories, encompassing many 

methods and individual approaches. Tt is classically split into the two main branches of 

predictive/supervised learning and descriptive/unsupervised learning (Murphy, 2012). While the 

task of image classification may make use of unsupervised methods (e.g., K-means clustering) to 

describe the data, supervised methods are the more commonly employed (Murphy, 2012). Two 

very popular supervised image classification methods focused on in this paper are the Support 

Vector Machine (SVM) and Random Forest (RF) classifiers. Thanh Noi & Kappas (2017) note a 

significant increase in the popularity of machine learning as a whole for remote-sensing-based 

applications between the years 2007 and 2017. Especially SVM and RF classification saw increased 

usage during this time span.
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When employing these classical machine learning techniques, the image is analyzed based on its 

pixel values. Spatial topological relationships are not taken into account like in the more recently 

developed GEOBIA approach (Lang et al., 2019). 

In recent years the concept of deep learning has shown impressive performance in many fields and 

may be one of the first things associated with machine learning. However, SVM and RF classifiers 

have distinct advantages over more complex deep learning approaches. The simpler design of these 

methods usually makes the results easier to interpret and explain. SVM and RF classifiers have 

also achieved good results on limited amounts of training data (Mahesh et al., 2022). Furthermore, 

these classifiers typically require significantly less computing power than most deep learning 

approaches. 

This project employs the SVM and RF algorithms to perform land cover clagsification of 

multispectral Sentinel-2 imagery of San Marino. This study area can be seen in Figure 1. Two 

target land cover classifications are explored: the CORINE Land Cover (Biittner et al., 2021) 

provided by the Copernicus Land Monitoring service and a simplified land cover comprising three 

classes. Finally, an accuracy assessment is performed to validate the results.



3 A. Dawuda 

San Marino Sentinel-2 RGB 

0 1 2 4 Kilometers 

L 1 1 1 | | 1 1 | 2023, Adian Dawuda 

Figure 1: San Marino Sentinel-2 Composite 2018
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2 Methods 

2.1 SVM 

The SVM algorithm was initially created by Cortes & Vapnik (1995) to perform binary 

clagsification of a dataset using labeled training data as input. The SVM is an extension of the 

maximal margin classifier and support vector classifier (also called soft margin classifier), unlike 

which it has the ability to classify data with non-linear class boundaries (James et al., 2021). The 

initial concept of the SVM can be further extended to allow for the classification of more than two 

classes. SVMs have been known to achieve high performance in various fields without requiring 

extensive modification to the algorithm (James et al., 2021; Mammone et al., 2009). This includes 

image classification in the field of EO. Culberg & Fuhs (2017) successfully demonstrate the 

automation of satellite imagery classification using the SVM and logistic regression models. 

Kranj¢ié et al. (2019) investigate the use of SVMs to classify green urban areas using Sentinel-2 

imagery. The authors are able to achieve a high classification accuracy for two study areas (Kappa 

index = 0.87 and 0.89). Tzotsos (2006) evaluates the use of SVMs for object-based image 

clagsification of EO imagery with promising results. 

The aim of the SVM is to find a suitable separation of data in a high-dimensional feature space, 

where each dimension represents a feature or characteristic of the data (Mammone et al., 2009). 

The initial data provided to the algorithm is labeled with the correct class. In the case of EO data, 

the features may be spectral reflectance values for which the label may be a certain landcover type. 

The two classes are separated by a threshold, commonly known as the hyperplane, which divides 

the feature space into two sections (in the case of binary classification). Each section corresponds 

to a separate class. The term hyperplane can be used to describe the separating threshold between 

two classes regardless of dimensionality. The dimensionality of the hyperplane is defined by the 

dimensionality of the feature space. In an n-dimensional feature space the hyperplane is n —1 

dimensions (James et al., 2021). If the feature space is 1-dimensional the hyperplane can also be 

referred to as a point. If the feature space is 2-dimensional the hyperplane is also a line. If the 

feature space is 3-dimensional the hyperplane is also plane. If the dimensions of the feature space 

are greater than 3 the hyperplane is simply described as a hyperplane (James et al., 2021). 

The margin is defined as the shortest distance between the samples of each class and the 

hyperplane. An optimal hyperplane lies between the maximum margin (James et al., 2021; 

Mammone et al., 2009; Meyer, 2009). SVMs may employ different techniques to find the optimal 

margin. The maximal margin classifier can be used to find the maximum margin between two 

classes by placing the hyperplane between the closest data points of the two classes, regardless of 

data distribution. This technique is highly sensitive to outliers (poor model of real class distribution 

when the hyperplane placement is defined by outliers) and cannot be used for non-linearly
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separable data (James et al., 2021; Mammone et al., 2009). The support vector classifier can be 

used to create a more robust classification not susceptible to outliers by allowing for 

misclassifications (Mammone et al., 2009). The support vector classifier employs cross-validation 

of the data samples to find the optimal margin. The soft margin may result in samples of a class 

appearing on the wrong side of the hyperplane (misclassification) but represents the overall data 

distribution more accurately. When using a soft margin, the samples on the edge of the margin 

are referred to as support vectors (James et al., 2021). 

While support vector classifiers allow for some overlap of the data, they cannot effectively classify 

non-linearly separable data. SVMs are able to do this by using kernels to (usually) add one or 

more additional dimensions to the feature space making the data linearly separable. A support 

vector classifier can then be found to separate the data into two groups (James et al., 2021; Meyer, 

2009). The polynomial, radial basis function (RBF), and Gaussian kernels are among the most 

widely used (James et al., 2021; Lv & Wang, 2020; Thanh Noi & Kappas, 2017). 

Once a suitable margin has been established, new data samples can be classified based on their 

feature values. This is done by checking on which side of the hyperplane the sample lies and 

assigning it to the appropriate class. 

The use of a single SVM is inherently tied to binary classification, as the concept does not work 

well with more than two classes K (James et al., 2021). However, SVM classification may still be 

used to classify multiple classes. Two popular methods are one-versus-one (OVO) and one-versus- 

all (OVA) classification (James et al., 2021). These methods use different approaches to transform 

a multi-class classification into a series of binary classifications. For K > 2 classes, OVO 

classification creates an SVM for each pair of classes and performs a binary classification. When 

classifying a new sample, the number of times the sample is assighed to a certain class is noted. 

Finally, the sample is classified as the class to which it was assigned the most (James et al., 2021). 

This method shows similarities to the ensemble principle of the RF algorithm. The number of 

SVMs to be created can be expressed by the binomial coefficient of (12(), which potentially makes 

this method highly computationally intensive. Using OVO classification for five classes a total of 

10 SVMs would be needed. For 10 classes a total of 45 SVMs would already be needed. 

For K > 2 classes, OVA classification only trains as many SVMs as there are classes. Each SVM 

performs the classification for a certain class for which all other classes are treated as a single class, 

thus creating a binary classification. To clagsify a new sample, the sample is classified by each 

SVM. Since the sample is likely to be assigned to multiple classes during this process, the distance 

from the hyperplane is used as a confidence criterion. The greater the distance, the more likely it 

is to belong to that class. The sample is classified as the class for which it is the furthest from the 

hyperplane. An advantage of the OVA approach is the comparatively low number of SVMs needed.
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2.2 Random Forest Classifier 

The random forest classifier is an ensemble method, meaning it is made up of many simple models. 

In this case decision trees. On their own, these simple models are not very accurate (Hastie et al., 

2009). However, when combined, the resulting model can be very powerful (Belgiu & Dragu, 2016; 

James et al., 2021). Similarly to the SVM, the RF algorithm is also commonly implemented to 

classify EO data. Rodriguez-Galiano et al. (2012) explore the performance of the RF algorithm for 

land cover clagsification of a complex area primarily using Landsat-5 data. The authors are able 

to achieve an overall classification accuracy of 92% (Kappa index = 0.92) with the RF algorithm 

outperforming a single decision tree model. Du et al. (2015) explore the use of ensemble methods 

for Polarimetric Synthetic Aperture Radar (PolSAR) image classification. Using textural features, 

morphological profiles, and polarimetric features the RF classifier is able to successfully classity 

images achieving similar performance to the benchmark SVM classifier. Pal (2005) describes the 

overall performance of the RF algorithm to also be comparable to that of the SVM for land cover 

classification. 

The first step of the RF classifier creates multiple bootstrapped datasets from the original dataset 

(Hastie et al., 2009). Samples are randomly selected from the dataset and placed into a new 

dataset. The same sample may be selected more than once and others not at all. In this case the 

use of bootstrapping and then using the aggregate aims to reduce the variance of the classification 

and avoid overfitting of the model. Bootstrap aggregation is also known as bagging (James et al., 

2021; Murphy, 2012). 

Secondly, a decision tree is created for each bootstrapped dataset. In this process, only a subset of 

all features is used as candidates for the root node of the tree. The optimum number of subset 

features is calculated and the features themselves are selected randomly (Hastie et al., 2009). 

Among the subset, the best feature is selected as the root node and the node is split into two 

intermediate nodes. The process of selecting the best feature from the previously defined subset 

size and all following steps are repeated for all intermediate nodes until the minimum node size is 

reached and the tree is complete (Hastie et al., 2009). 

Using the above steps, an ensemble of decision trees is created. The use of only a subset of all 

available features at each step ensures that single trees of the ensemble are less similar to each 

other, as otherwise the best predicting feature(s) would more frequently be chosen as nodes (James 

et al., 2021). 

To classify a new data sample using the random forest method, the sample is given to each decision 

tree in the ensemble and the output of each tree is noted as a vote. The class with the highest 

number of votes is used as the final classification for the sample (Hastie et al., 2009).
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Since samples can be chosen multiple times in the bootstrapped datasets, not every sample must 

be included. In practice, about one-third of the original samples are left out in each bootstrapped 

set (Breiman, 2001). These samples are called out-of-bag (OOB) samples and can be used to test 

the performance of each tree for which the sample is OOB. The proportion of all incorrectly 

clagsified OOB samples is called the OOB error. Using the OOB error as a measure of performance, 

the number of subset features to be selected as candidate nodes can be optimized by comparing 

the error for different values (Hastie et al., 2009; James et al., 2021). 

2.3 Data 

2.3.1 Land Cover 

Two different land cover classifications are used as reference/ground truth classifications in this 

project. The first is the CORINE (Coordination of Information on the Environment) Land Cover 

(CLC) provided by the Copernicus Land Monitoring Service (Biittner et al., 2021). This database 

aims to be used as a standard for describing land cover in Europe to support environmental policy 

development (Biittner et al., 2021). In this project, the latest version of the database from 2018 is 

used. CLC classification is based on satellite and in-situ data. The CLC includes a total of 48 

classes, of which the following 11 are present in the study area (Figure 2): 

e Discontinuous urban fabric 

e TIndustrial or commercial units 

e Sport and leisure facilities 

e Non-irrigated arable land 

o Pastures 

e Complex cultivation patterns 

e Land principally occupied by agriculture, with significant areas of natural vegetation 

e Broad-leaved forest 

e Mixed forest 

e Natural grasslands 

e Transitional woodland-shrub. 

Besides the CLC, which provides a high number of classes with a focus on environmental policy 

development, a simpler land cover comprising only three classes is created. These three classes are: 

e Developed land 

e Fields/Grassland 

e Torest 

The performance of the SVM and RF algorithms will be assessed and compared to each other for 

both reference classifications.
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Figure 2: CORINE Land Cover Classes San Marino 2018
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2.3.2 Satellite Imagery 

The remote sensing imagery analyzed in this project is captured by the European Sentinel-2 

satellite, which is equipped with a Multi-Spectral Instrument (MSI) payload able to capture 13 

spectral bands (European Space Agency, 2013). The type of processed data used is Level-2A. This 

delivers Bottom-Of-Atmosphere (BOA) reflectance imagery by applying atmospheric correction to 

Top-Of-Atmosphere (TOA) imagery. Level-2A data also applies a scene classification algorithm to 

the imagery, which allows for detailed detection of clouds, cloud shadows, and snow (European 

Space Agency, 2013). 

The data is obtained using the Google Earth Engine web interface. The JavaScript code used can 

be found in the annex for this paper. As one of the goals of this project is to compare SVM and 

RF clagsifications to the 2018 CLC mapping, a composite image of San Marino for the year 2018 

(January 1, 2018, to December 31, 2018) is created. The scene classification map created by the 

scene classification algorithm is used to mask out clouds in the composite image. The image is 

exported at a spatial resolution of 10 meters. 

The data is further prepared in ArcGIS Pro. The steps performed can be replicated using the 

ArcGIS Pro Python API. The code can be found in the annex for this paper. First, the Sentinel- 

2 image is clipped to the extent of San Marino’s exact country boundaries. Since the resolution 

among the bands varies (10 meters: B2, B3, B4, B8. 20 meters: B5, B6, B7, B&b, B11, B12. 60 

meters: B1, B9, B10) (European Space Agency, 2013), a copy of the raster image with a spatial 

resolution of 60m is created using Nearest Neighbor interpolation. Another copy containing only 

the 10-meter spatial resolution bands (Blue, Red, Green, and Near Infrared) is created. The 

resulting two images are used as the basis for the following classification. 

2.4 Classification 

The SVM and RF classification is also conducted using the ArcGIS Pro Python API. The Forest- 

based Classification and Regression (RF implementation), and Train Support Vector Machine 

Classifier tools are used. 

First, both algorithms are run to classify the 10-meter resolution image into CLC classes. Both 

the SVM and RF classifiers are supervised machine learning algorithms that require labeled data 

as training input. Therefore, representative samples for each class are collected and saved to a file. 

the SVM and RF classifiers are then trained on the image using a maximum of 500 pixels of the 

labeled data per clags. After training the classifiers, they are used to perform the classification of 

the image. The accuracy is assessed by comparing the classification with a layer of the CLC of San 

Marino. This is done by randomly selecting 500 pixels within the image and comparing the class 

values. A confusion matrix of the classification accuracy is then computed. The quality of the RF 

clagsification is additionally determined by assessing the OOB error. The same steps as described



―
―

―
―

 

Support Vector Machine and Random Forest Algorithins for Satellite Image Classification 10 

above are repeated to classify the 60-meter spatial resolution image into CLC classes and evaluate 

the results. 

Secondly, both algorithms are used to classify both Sentinel images into the simple, three-class 

land cover classification using the same method. As there is no reference database for the simple 

classification, the accuracy assessment of the SVM and RF classifications is performed manually. 

This is done by randomly selecting 50 classified pixels and manually assigning them a simple land 

cover class. Sentinel and Google Maps imagery is used as a reference to accurately assign classes 

for each pixel. The validation pixels’ classified classes are then compared to the manually assigned 

classes and a confusion matrix of the classification accuracy is computed. 

3 Results 

Table 1 shows the performance metrics of all classifications performed. The overall OOB error is 

calculated as the weighted average of the OOB errors for each class. 

Table 1: Performance measurements of all classifications 

OOB Error Accuracy Kappa Index 

CLC SVM 10m - 0.191 0.092 

CLC SVM 60m - 0.396 0.233 

CLC RF 10m 78.282 0.164 0.075 

CLC RF 60m 55.289 0.371 0.187 

Simple SVM 10m - 0.868 0.746 

Simple SVM 60m - 0.830 0.699 

Simple RF 10m 5.283 0.698 0.456 

Simple RF 60m 6.812 0.736 0.544 

The resulting classifications can be seen in Figures 3 through 10.
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Figure 3: SVM CORINE Land Cover classification of 10m spatial resolution image 
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Figure 5: Random Forest CORINE Land Cover classification of 10m spatial resolution image 
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Figure 6: Random Forest CORINE Land Cover classification of 60m spatial resolution image
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Figure 7: SVM Simple Land Cover classification of 10m spatial resolution image Figure 8: SVM Simple Land Cover classification of 60m spatial resolution image
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Figure 9: Random Forest Simple Land Cover classification of 10m spatial resolution image Figure 10: Random Forest Simple Land Cover classification of 60m spatial resolution image
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4 Discussion 

For all clagsifications, the SVM and RF classifiers display comparable visual results and 

performance metrics. Both the SVM and RF classifiers perform substantially better on the simple 

land cover than on the CLC. This is confirmed by all evaluation metrics. However, due to only 

using 50 validation points for the simple land cover accuracy assessment, the statistical significance 

of the accuracy and Kappa index is lower than for the CLC classification (500 validation points 

used). Inspecting the accuracy and Kappa index values for all classifications shows that the SVM 

classifiers slightly outperform the RF classifiers. This aligns with the findings of Thanh Noi & 

Kappas (2017) and Zhang et al. (2023), where among RF and other machine learning algorithms 

the SVM achieved the highest land cover classification accuracy. 

Decreasing the spatial resolution and increasing the number of bands shows a positive effect on 

the CLC classification quality for both SVM and RF classifiers. However, for the simple land cover 

clagsification no clear improvement is observed. The increased CLC classification quality for the 

60m resolution image can be a result of the higher number of available explanatory variables (image 

bands). This increases the computing power needed but also allows for a clearer distinction between 

visually (RGB) similar-looking classes. Furthermore, the decreased resolution has a noise-reducing 

effect. Some CLC classes are quite abstract and contain highly heterogenous pixel values at a high 

resolution. E.g., Sport and leisure facilities: These may be difficult to correctly classify using a 

pixel-based approach, as some of the spectral signatures contained in this class are comparable to 

those contained in built-up or vegetation classes (numerous built-up and vegetation pixels wrongly 

classified as Sport and leisure facilities, especially in the 10m CLC RF classification). The 10m 

resolution image, therefore, contains a higher in-clags variance of pixel values. At a 60m spatial 

resolution, this variance is smoothed out, making the class membership of pixels less ambiguous 

and improving the CLC classification quality. As the spectral signatures of the simple land cover 

classes have less overlap, the classification quality stays roughly the same at both resolutions. 

The CLC also contains classes that may have very similar overall spectral or multispectral 

signatures, regardless of smoothing, such as Land principally occupied by agriculture, with 

significant areas of natural vegetation, Broad-leaved forest, Mixed forest, Natural grasslands, and 

Non-irrigated arable land. The results show that both classification algorithms have trouble 

correctly assigning the values of these classes. The 10m resolution classifications display a higher 

amount of forest and grassland classes, while the 60m resolution classifications show higher 

amounts of agricultural land cover classes. The 10m resolution classifications also misclassify many 

areas of Discontinuous urban fabric as Industrial or commercial units. The lower resolution 

classifications create a distinction more closely resembling the CLC reference image.
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Overall, the low accuracy of the CLC classifications can be explained by the presence of overlapping 

pixel values, heterogenous classes, as well as possibly a low number of samples for rare classes like 

Pastures and Sport and leisure facilities. 

The amount of time taken to train the SVM clagsifier was observed to be significantly longer than 

for the RF classifier, especially when training the SVM classifier on the CLC. This may be due to 

the method employed for multiclass classification. As the number of SVMs needed is described by 

the number of classes K (OVA classification) or (12{) (OVO classification), either 11 or 55 SVMs 

need to be trained to classify an image into the CLC classes. It is unclear which method of 

multiclass classification is employed by the ArcGIS Pro implementation of the SVM algorithm. 

To improve the transparency and modularity of the classification process (e.g., choice of SVM 

kernel and multiclass classification method) in future analyses, lower-level /open implementations 

of both SVM and RF algorithms should be chosen. The classification quality may be improved by 

employing an object-based approach with SVM and RF classification, such as the object-based 

land-cover processing chain employed by Grippa et al. (2017). 

5 Conclusion & Outlook 

In conclusion, this project successfully explored the classification of Level-2A Sentinel-2 imagery 

into CORINE and simple land cover classes using the SVM and RF classifiers. The classifiers were 

trained and applied on the imagery, and their performance was assessed. Both classifiers achieved 

comparable results, with the SVM showing slightly higher validation metrics. Both algorithms only 

achieve a low-accuracy classification for the CLC. The quality of the simple land cover 

clagsifications is moderate to high. More modular algorithm implementations and pre-classification 

image segmentation may improve the results in future analyses.
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